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Abstract

A highly accurate pseudospectral numerical approximation to the generalized coordinate, nonconservative form of
the Euler equations is implemented for supersonic flow over an axisymmetric blunt body geometry; shock fitting is
employed to maintain global accuracy and minimize the corrupting influence of numerical viscosity. The variables in
the Euler equations as well as the physical grid coordinates are collocated via Lagrange interpolating polynomials and
the problem is then cast in the standard form of a large system of ordinary differential equations, dx/dt = q(x), which
can be solved using standard solution techniques that do not require an explicit criteria for the minimum time step.
Code verification is performed by demonstrating through a series of grid refinement tests that the error in the ap-
proximation to a Taylor—-Maccoll solution converges to 107!2. Grid refinement tests for flow over a blunt body show
convergence of the numerical error also to 107'2. The code is validated for supersonic flow over a blunt body by
comparison with the modified Newtonian approximation for the surface pressure distribution and empirical predictions
for the shock shape. The ability of the method to capture unsteady flow phenomena is demonstrated on the problem of
a planar acoustic wave interacting with an attached shock.
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1. Introduction

As a prerequisite for developing a new technique for shape optimization of bodies in supersonic flow
[1], we require a highly accurate flow solution technique. Consequently, in this work, we present a
pseudospectral numerical approximation to the solution for the supersonic, inviscid flow of a calorically
perfect ideal gas over an axisymmetric blunt body in standardized form. The shock is fitted since ap-
proximation of discontinuous solutions with high order polynomials exhibits the Gibbs phenomenon in
the form of global oscillations in the solution [2]. These oscillations can cause the numerical scheme to
become unstable, and attempts to remove the oscillations by spectral filtering or by addition of artificial
viscosity significantly reduces the accuracy of the numerical method. The more common alternative of
shock capturing, while generally stable and nonoscillatory, yields only first order accuracy [3].

While the main motivation of our work is to have high accuracy steady state solutions available for use
in a shape optimization procedure, we note there are outstanding questions regarding numerical and
physical instabilities in multi-dimensional shock dynamics for which a standard formulation of
dx/dt = q(x) has value. As stated in [4-11], the issues of shock stability are controversial since it is not clear
what effects are real and which ones are purely numerical artifacts. Although shock stability will not be
investigated in the current work, the shock fitting method used here is the most appropriate for addressing
fundamental stability questions for inviscid flows due to the significantly low level of numerical viscosity
inherent in the method. Furthermore, should a physical instability exist, one would like to have a numerical
method with sufficient robustness to automatically select the time step so as to resolve the dynamics, and
because of the additional dynamic equations which arise from the unsteady shock wave, a simple CFL
criterion is insufficient in the general case. Fortunately, the casting of the discretized governing equations
into the form dx/dt = q(x) allows the use of standard software packages which have automatic time step
selection, precluding the necessity of an explicit condition for numerical stability. As such, we place em-
phasis here on obtaining this standard form.

We briefly review the literature on solutions to the supersonic flow over blunt body geometries.
Rusanov [12] and Hayes and Probstein [13] have given thorough reviews of early contributions, of
which a few will be mentioned. Two methodologies for calculating solutions to the supersonic flow
about a blunt body are the direct and inverse methods. In the direct method the body shape is
specified, and then the shock shape and flow field are calculated. In the inverse method the shock shape
is specified, and the body shape which would support that shock shape is calculated. At first, studies
concerning the inverse problem were based on series expansion of the governing equations in the vi-
cinity of the shock wave [14]. Later, numerical solutions to the inverse, supersonic blunt body problem
were performed by Garabedian and Lieberstein [15] and Van Dyke [16]. Evans and Harlow [17] were
the first to generate numerical solutions to the direct problem by integrating the unsteady Euler
equations to a relaxed steady state solution. Moretti and Abbett [18] used finite differences and fitting
of the shock to generate accurate solutions of the Euler equations about a blunt body; this laid the
foundation for subsequent shock fitting numerical schemes. Pseudospectral approximations to the Euler
equations employing shock fitting with spectral filtering were first performed by Hussaini et al. [19] and
without spectral filtering by Kopriva [20]. The numerical technique employed in the current paper
builds on the work by Kopriva [20,21], and Brooks and Powers [22].

We briefly review the pseudospectral methods. An early unified mathematical description of the theory
of spectral and pseudospectral methods was given by Gottlieb and Orszag [2]. Significant advances oc-
curred in the late 1970s and early 1980s and are well documented by Canuto et al. [23], with particular
application to fluid dynamics. For a more recent review, see [24].

There does not appear to be complete consensus in the literature for the definition of pseudospectral; a
definition is adopted here which we believe useful and consistent with that of Fornberg [25]. We define a
pseudospectral method to be a collocation type of method of weighted residuals, as defined by Finlayson
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[26], in which the error in the solution to the governing equations is driven to zero at collocation points; the
flow quantities are represented in terms of global Lagrange interpolating polynomials defined at the col-
location points. The spatial derivatives of the flow quantities are then calculated by differentiating the
Lagrange interpolating polynomials. Efficient algorithms for calculating derivatives of Lagrange interpo-
lating polynomials on arbitrary grids can be found in [25]; these algorithms were used in the current work.
A property of the pseudospectral method is that approximations to derivatives have global support, making
it equivalent to a finite difference scheme with a stencil that extends over the entire domain. As the number
of points is increased, the size of the stencil grows, leading to a higher order accurate solution.

2. Supersonic blunt body flow and pseudospectral solver
2.1. Standard formulation

Before presenting the geometry, governing equations, boundary and initial conditions for the blunt body
problem, we will briefly outline the procedure for formulating this problem as a system of ordinary dif-

ferential equations (ODEs). The Euler equations, physical grid evolution equations, shock velocity equa-
tion, and boundary conditions defined over the computational domain

Q:{¢e0,1],n€[0,1]}, (1)

and bounded by S, can be written in the form of the following coupled system of time-dependent partial
differential and algebraic equations

ay dy dy
—+fly,—5,=—~ | =0 2
o (y’6§’6n> ’ 2)
oy 9y _
g<y’a—é’a> —07 (3)
along with the initial conditions
Y(EH%O) = yO(éai/I)a (4)

where ¢ and # are independent spatial variables in the computational space, and f and g are nonlinear
functions of the dependent variables y(¢&,#,t) and its spatial derivatives. All of the algebraic constraints,
Eq. (3), are boundary conditions and thus apply only on S.

Approximating y(&,#,1) and its spatial derivatives via global Lagrange interpolating polynomials, the
system of partial differential and algebraic equations in Egs. (2) and (3) reduce to the following system of P,
differential algebraic equations:

dy,(z
dpi):fp(ylv"'ayl’z)a pzlv'“apla (5)

O:gpl(ylv"'vyf’z)7 p,:P]+17"'7P27 (6)

with initial conditions from Eq. (4)

1,(0) =, p=1,...,P. -
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Here yi(7),...,yp,(7) are the flow quantities, physical grid coordinates, and shock velocity evaluated at
nodal points on an (N + 1) x (M + 1) mesh. Solving for the y,(7), p' = P + 1,..., P, as explicit functions
of they,, p=1,...,P, ie.

J’//(T)ng/(ﬂau-,ypl)a P,:P1+1,~~-,P2- (8)

Eqgs. (5) and (6) are converted into the following system of P, ODEs:

dx,(t

%:qp(xl,...,xpl), p=1,...,P, 9)
where

q[)(xh"'axP])Ef;n(ylw"ayP]a/g\p’(y17'~'7yP1))7 pzla"'aPla p/:P1+17"'aP2a (10)
and

(1) =w(1), p=1,...,P. (11)

The accompanying initial conditions are
x,(0) =xpp, p=1,...,P. (12)

In compact vector notation, Eq. (9) is

X aw), (13)

with accompanying initial conditions
x(0) = xo (14)
from Eq. (12).

2.2. Governing equations

The two-dimensional, axisymmetric Euler equations for a calorically perfect ideal gas are in dimen-
sionless form:

op op op Qu Oow u)
at+uar+waz+p(ar+az+r>—0, (15)

Ou Ou ou 1 @7

—tu— —+-=—=0 16
I PR SR v (16)
ow ow ow 10p
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where p is density, p is pressure, u and w are the velocities in the radial and axial directions, respectively, r is
the radial coordinate, z is the axial coordinate, ¢ is time, and y is the ratio of specific heats. The dimensional
form for pressure, p*, density, p*, and »* and z* components of velocity, u* and w*, respectively, are re-
covered by the following equations:

P =ppr., (19)

P = ppL.; (20)

u' =u\/pL/pi, W =w\/DPi/pk, (21)

where dimensional quantities are denoted by a *, and freestream quantities are denoted by oo. The di-
mensional space and time variables are

zf=zL, r'=rL, (22)

£ =1tL/\/P5/ Pk (23)

where L is the length of the body. The freestream flow is at zero angle of attack so that the component of
freestream velocity in the » direction, u,, = 0.
Defining the entropy to be s, we have, for a calorically perfect ideal gas with zero freestream entropy,

p
s=In{ =, (24)
(%)
where the entropy is nondimensionalized by the the specific heat at constant volume, c,
s* = sc;. (25)

To facilitate the solution to the Euler equations for time-varying geometry, Eqs. (15)—(18) are rewritten
in terms of a general body-fitted coordinate system, &(z, r, ¢), 5(z, r, t) and 1(z, r, t). Employing the chain rule
of differentiation

o _0co ma oo
Oz 0zOf ozoy ozor

8 00 o ocd

o orot orong  orod (26)
o oc0 ogo 00

o o d¢ ooy ordr
and taking t(z,r,¢) = ¢, the nondimensional form of Eqgs. (15)—(18) in generalized coordinates is

6/) ap ap 0lOu OfoOow Onodu Onow pu
“get (ar et tanazy) T 27)

6u A@u _Ou oop Onop
—0 28
et ¥t ©n+p<6raf+6ran ) (28)
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ow 0w _Ow 1/0L0p Ondp\
o T¥%e W8n+p<6265+62617 =9, (29)
o  -0p _0p

+u+w+"/p(

0 du 25w o du_ dndw)  jpu
ot T "aE T Moy

oro¢ 0z0f Tarog Tazon) T Y (30)

7

where the contravariant velocity components u and w are

.. 0¢ 0¢ 0
Oy on on
W—E‘Fl/la—‘ng. (32)

The following standard relations between the metrics and inverse metrics will be necessary

o l1or on  1or

oz Jop 0z JdE
o 10z on 1oz

o Jonp o JOE

33
e (E5-58) o _(¥%-£8) Y
ot J T J ’
yodre o
on o ooy’

where J is the determinant of the metric Jacobian matrix.

-04 -0.2 02 04 06 08 1

Fig. 1. Schematic of shock-fitted high Mach number flow over an axisymmetric blunt body including computational (&,#) and
physical (r,z) coordinates.
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2.3. Computational and physical coordinates

The physical domain of the blunt body problem, Fig. 1, is mapped to the computational domain,
£ €10,1], n € 0,1], in such a way that the body surface lies along the computational boundary (&,0), the
shock lies along the boundary (&, 1), the symmetry axis is a third boundary at (0,#), and the fourth
boundary at (1,#) is a supersonic outflow. The transformation between the physical coordinates (r,z) and
computational coordinates (&,#) is taken to be

n %2 h(E )

2 2’
dr(&) dz(¢)
\/( df) +( d;)

r(&m7) = R(S) + (34)

(35)

where the nonlinear function /4(&, ) must be specified to completely determine the mapping, and R(¢) and
Z(&) are known functions. After manipulation, the transformations in Egs. (34) and (35) yield the following
identity:

h(E,T) = (26, 1,7) — 2(6,0,0)) + (16, 1,7) — #(£,0,7)), (36)

from which it is seen that the function 4(¢, 7) is the distance in »—z space between the body surface, n = 0,
and the shock, # = 1, along lines of constant &. The function 4(¢, 1) is subsequently referred to as the shock
distance function. We see that Egs. (34) and (35) form an implicit algebraic equation for the coordinate
transformation. It is apparent from Egs. (34) and (35) that the functions R(¢) and Z(¢) parameterize the
blunt body surface, n = 0, i.e.

r(£,0,7) = R(),
2(¢,0,7) = Z(¢),

(37)

and that the body surface is not a function of time. The transformations in Egs. (34) and (35) have been
constructed so that lines of constant & are normal to the body surface and have no curvature in r—z space.

The time evolution equations for the physical grid #(&, 7, 1), and z(£, 5, 1) can be found by differentiating
Eqgs. (34) and (35) with respect to time as follows:

dz(9)
0 n=gs v(& 1)
a_r(67177‘5): dC2 2’ (38)
i \/ (29 + (22)
dé dé
dR(9)
d N v(& 1)
&Z(éa’?a‘f) = - dCZ 7 (39)
JCE) C)
dé g
where the shock velocity function v(¢, 1) is
0
v(¢,7) (& 7). (40)

T
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2.4. Boundary conditions

The kinematic boundary condition of no mass flux at the body surface requires that the velocity com-
ponent normal to the body surface, vpn(¢, 7), be equal to zero, i.e.

UBN(f,T) = ?V(@Oﬂ[) =0. (41)

In order to formulate a numerical boundary condition at the body for p, u, w, and p, Egs. (27)—(30) are
written in the following form:

0z 0z 0z
—4+A—+B_-4s=0 42
o + 3¢ + 3 +s=0, (42)
where
p pufr
=" s=] o . (43)
p pufr
iop% opE 0 wopg e 0
o 1a = 19
A— 0 u 0 b or B— 0 w p or (44)
-~ e | B =~ d
0 o0 u % = 0 0 w % =
0 w§ wE U 0 g wg W
The flux Jacobian matrix B is then decomposed as
B=P AP, (45)

where the square matrix P contains the left eigenvectors of B in its rows; the diagonal matrix A, contains
the eigenvalues of B in its diagonal; and P~! is the inverse of P. Substituting Eq. (45) into Eq. (42) and
premultiplying by P yields the following characteristic formulation [27,28] of the governing equations:

%+PA%+A,,P%+PS:0. (46)

P ot o0& on

The diagonal eigenvalue matrix A, and the left eigenvector matrix P are

o o 3
o 3 o
o

=]
(e
=]
S
_|_
(9
—~
|2
S~—
(S}
+
—~
12
~—
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5 -

0 o ?)- 0
— 0z0r z
CRONENCEC—.
1 0 0 -1
P=10 - an\2 | (o2 B an2 o2 2| (48)

W@ @@

0 PC% pc% %
@@ /@@

where ¢ = +/yp/p is the dimensionless acoustic speed. Since w is everywhere negative and since

W] < |le \/ on/dz)” + (0n/or)*|| at n = 0, only the first three of the equations in Eq. (46) can be used in
formulating numerlcal boundary conditions since they are associated with negative eigenvalues, A,. The
fourth equation in Eq. (46) is associated with a positive eigenvalue and thus describes information prop-
agation from inside the body which must therefore be discarded as nonphysical; in its place the physical
boundary condition, Eq. (41), is employed. Making use of the fact that w(¢,0,7) = ¢, = 0, the three
differential equations from Eq. (46) to be solved at the body surface, = 0, are cast in the following form,
which is consistent with Eq. (2)

dp 1 ap 6p 1 ap
FYS 4
[@‘c ot ( R 0 (49)
o dw _ Oy du 1(0ndE _ dn e\ op
) u(g -+ (FE-28)E
§UBT(57T): ( ( - ;) 4 q) , (50)

(€,0,7)

op Pcﬁ(7&+7?)+0(aé+7é)g%_ (6§6u & ow  On du ar]6w>

ot (@) s () rof 2 oE ooy o on

(€,0,7)

The velocity components u(&,0,1) and w(&,0, 1) are specified as following functions of vpr:

or &z
u(é’o’f) _ 6503T(€7r) 7 w(5707r) _ aiUBT(éyf) ) (52)

(a )2 % o) %
£) +(%) (2) +(%)
o %/ leon o %7 eon

At the shock boundary, the Rankine-Hugoniot relations are solved along with a compatibility equation.
Specifically, the Rankine-Hugoniot relations are

Voo * eST|(§,1J) =V eST|(cj,1J)7 (53)

2Vpoo
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. _2ps o 71
p<g’1’f)_y—4——15°°(é’f)_y—ﬁ——1p°°’ (55)
0o (&,
p(e1,7) = 2xed) (56)

- (Ss(é,‘f) poc,

where dg and J,, are the component of fluid velocity normal to the shock in the shock-attached reference
frame on the downstream and freestream sides of the shock, respectively, i.e.

_ v eSN|(§,l,r) - USN(&; T)a
ds(6e) = {V ‘ eSN|(5,1,1) - (e,, : esN)U(f, 1), (57)
500<€a 7-') = Voo eSN|(5,1,1) — (eﬂ . eSN>U(~’f, ‘L')7 (58)

and v(¢&, 7, ) is the nondimensional velocity vector. The nondimensional freestream velocity vector v, is

Voo = yp_ocMooez. (59)
V P

In Egs. (53)—(57), esr is a unit vector in the direction tangent to the shock wave, egy is a unit vector in the
direction normal to the shock wave, and vsn(€, 7) and v(€, 1) are the velocities of the shock in the egy and e,
directions, respectively. Quantities denoted with a subscript of oo are freestream quantities, and those with
no subscripts are post-shock quantities. The unit vectors est and egy are in terms of the inverse metrics

(e} o
— =€, +=.€
esT = oz " or % , (60)

2 n\ 2
(%) +(%) (&10)

o on
3. €r + % €2
ey = — - G F . (61)

2 2
(&) + (&)

In order to solve the Rankine-Hugoniot equations, an expression for the shock velocity, v(&, 1), is
needed. Differentiating Eqs. (54) and (55) with respect to time yields

(&1

0

0
aés(fﬂ) :Al(éar)aéw(éar)7 (62)
0 0
ap(@ 171) :A2(57r)a5m(é7r)> (63)
where
y—1 2y 46, (&, 1)

- _ _ 20160 4

Al(éar) V""l (“/—’-1)5;(67‘[), A2(§7‘E) "/"‘1 (6 )

The terms (0/01)ds(&, 7) and (0/01)04 (&, 1) in Egs. (62) and (63) are found by differentiating Egs. (57) and
(58), respectively, to yield the following:
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0 ov aeSN ov aeSN

aés(fﬂ) = [& “esN + V- o (er] : eSN) P vey, ?] (57“)’ (65)
d ~ [ove Oesn ov degn

aéoo(fﬁ) = [E - €N + Voo a0 (eq eSN) 3% ve, ?} i (66)

Multiplying Eq. (62) by pc and adding it to Eq. (63), and replacing the term (0/01)ds(¢&, 1) by Eq. (65)
and the term (0/01)d.,(&, 1) by (66), we arrive at the following equation for the shock acceleration

(@/07)u(&, 1),

(42 + pedy) (Voo — ve,) — pe(v —ve,)] -5 — pe Q. eqy — 2
(eﬂ . eSN) [Az + pC(A] — 1)]

&U(éa T) = (67)

(&1,7)

The terms Op/0t and pc(Ov/0t) - esy must be specified by a compatibility equation which is the charac-
teristic equation associated with the wave propagating from the body to the shock along the normal di-
rection. This compatibility equation is in the same form as the fourth compatibility equation in Eq. (46)
only written in shock coordinates instead of the body coordinate system (&, n, 7). After some simplification,
the following shock acceleration equation is obtained:

gv(f, = (s + pedy) (Voo — vey) - 25 — pe(v — ve,) - BN 4 4, ’ (68)
0t (e, 'eSN)[A2 + pc(d, —1)] Lo
where
_Op _Op 0 Ow  Onow O Ou  On Ou
A =02 7P
3= Upet W, TP (626§+626n+6r65 o o
oz
% _Ou, __Ou otop Onop
3 _r -
T arz<”a:+wa¢+ (ma:+arm
(8) + (%)
or
2z _ow _ow oS op  onop ypu
_ o hadd i [eatad
(”az:“LWan (azaz: o)) T (69)

5 2 o 2
(%) +(%)

The time derivative of the normal unit vector, desn /07, is found by taking the time derivative of Eq. (61)
with the metrics from Eq. (33) in place of the inverse metrics to yield

o %z oz 3 oz or
degn . (E ot 0F  of dr o¢ ag)(a_gez‘Fa—ie,.)
ot o . ) \ N 3/2
Z r

Since there is a geometric singularity in Eq. (69) at r = 0, the following alternate expression for v(0, 1) is
employed

(70)
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0
6—50(0,1) =0. (71)

We impose the following appropriate boundary conditions on the centerline, £ = 0, in computational
coordinates

ow
e =0, 72
0c (0,1,7) ( )
op
£ =0, 73
o¢ (0,1,7) ( )
u(0,n,7) =0, (74)
N p(0,n,0)\"
p(0,1,7) = p(0,1,7) <m) . (75)

The boundary condition in Eq. (75) comes from casting the energy equation, Eq. (18), in terms of the
nondimensional entropy, s,

Os Os Os

&+u§+w§:0. (76)
Enforcing steady state, 0s/0¢ = 0, and zero velocity in the r direction, u(0,#,7) = 0, Eq. (76) reduces to
%MW = 0. Thus s(0,7,7) is constant and equal to s(0, 1, 1), the nondimensional value of the entropy
downstream of the shock. Substituting s(0, 7, ) = In(p(0,1,7)/p(0,1,7)") into the equation for entropy, Eq.
(24), and simplifying gives the boundary condition in Eq. (75). We note that the enforcement of steady state
for entropy is artificial and potentially precludes some classes of unsteady behavior.

At the supersonic outflow boundary, & = 1, no physical boundary conditions are required as all waves

are exiting the domain. Here the governing equations are solved in exactly the same manner as in the
interior.

2.5. Summary of governing equations and boundary conditions

The governing equations and boundary conditions can be written in terms of the system of time-de-
pendent partial differential and algebraic equations in Egs. (2)—(4) in the two space dimensions, & and #,
where

[p(&n,7) ]
u(é,n,1)
w(é,n,7)
p(& 1)
y(& 1) = 25223 ; (77)
UBT(fJ)
p(&,0,1)
p(&,0,7)
L (&) |
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_Op __Op 0& Ou
e __p(aa_ﬁazag

uaé W@n

Ou __Ou
—u——w———

o¢ on
A@w__(%% on 6p>

__ow
—U——W

¢ oy

ap ap 6{ Ou L0
or 0¢ ' 0z o

K76

“oc @n

0t dw 0y du
Ordn 0z On

% op o0 op
or o0& 0Or Oy

oz 3¢ ' Az on

o¢ ow 67] Ou

or 811 0z On

S hte

() (58

2R

aé U(g,‘f)

)

_(On dw  On Ou on 0 0on &
|M\eeTzw) 5&‘55)@5

JE ()

c? ot

[ 10p

S(nou 2
rof o

(0p 1 0p
(=)

(¢.0,7)

@_ﬂ@_W)_ﬁ

%%)Jﬂ

r

7

(¢0,7)

n ow on o& on oL\ op
+ z6§)+c<6r o T2 %) o

o¢ du
(6r %

N(ERE

(4> + pcdy) (Voo — vey) -

&)+ 6

o0& ow 617 Ou Lo on ow
oz o ' or 611 0z 611
on ap ap pctu
or) oy 65 r

(¢,0,7)

aeSN aeSN

?—pc(v—veq) .t

(0,1 . eSN)[A2 + pC(Al — 1)]

(¢1,7)

Eq.(27)

Eq.(28)

Eq.(29)

Eq.(30)

Eq.(38)

Eq.(39)

Eq.(50)

Eq.(49)

Eq.(51)

Eq.(68)

(78)
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or
UBT Az
u— o¢
oyt (Y
o¢ a¢) 11,
) Eq.(52)
Oz
UBT A%
V(&) (@)
a¢ f ‘) (£,0,7)
0s0(&, 7T
&1,1) — Eq.(56
p(E 10~ T q.(56)
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In Egs. (77)~(79) y(&,n,7) : R* — R' and f : R* — R' while g: R* — R'". The functions y(¢,,7) and f
contain six components which are time-dependent functions over the domain Q with the remaining four
components time-dependent functions defined for on S only. The equation (dy/0t) + f = 0 represents 10
partial differential equations with 10 unknowns and g = 0 represents appropriate boundary conditions.

2.6. Numerical solution technique

In order to convert the system of partial differential and algebraic equations to a system of ODEs, it is
necessary to approximate the spatial derivatives dy/0¢ and dy/On at grid points (&,n,), i=0,...,N,
j=0,...,M. We choose to specify the grid in the computational domain, Fig. 2, according to the following
Gauss—Lobatto Chebyshev distribution:

ﬁi:%[l.—cos(%iﬂ, i=0,...,N,

nj:%{l.—cos(%j)}, j=0,...,M.

This choice of nodes is not unique and is made because global Lagrange polynomial approximations of
general nonperiodic functions defined on this grid were found in [29] to yield a more uniform and overall
lower error than a uniform grid. The functions y(¢, n,t) are approximated in terms of a double Lagrange
global interpolating polynomial defined on the mesh &,, n=0,...,N,n,, m=0,...,M, i.e.

N M

(&, 1) ~ Y(E 0 DL (E)LY" (). (81)

n=0 m=0

(80)

The Lagrange interpolating polynomials are

LEIN)(QV) = HZZV:O‘I#" (6_ él) n :Oa"'vNa

HJIV:OA, I#n (én - é/) 7

M

HI:O, I#m (n—m)
M )

H1:0,1¢m (M — 1)

(82)

LY (n) =

m=0,....M.

It is easily shown that the Lagrange interpolating polynomials, LV (&) and L?)(i7), have the values of unity
at £ = ¢, and n = 1, and zero at the other collocation points, i.e.
0 ifn#i 0 ifm=#j
<N) ) = .= ’ <M) L) = P— ’
L7 (e) = o { U itnei Dm0 =0m { 1 if m=. (83)
Derivatives of y(&, 5, ; b) are evaluated by differentiating Eq. (81). Evaluating these derivatives on the grid,

(&,n;), chosen to be the same grid as that used to define the interpolating polynomial, i.e. (&;,1;) = (&, 1,,)s
and making use of Eq. (83) yields

SIS L, .
¢ (éiwﬂ/) ~ L y(éna'/’jaf) dé (51)7
M (84)
~ y glanm, ( )
671 (g, '7/) mz: J

The terms (dZ,/d¢)(¢;) and (dL,,/dn)(n;) in Eq. (84) are evaluated efficiently for an arbitrary grid using an
algorithm developed by ornberg [25]. The operation count for approximating the derivatives via Eq. (84)
on an N x M grid is (NM)* operations for direct matrix multiplication used here. The points which both
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define the Lagrange interpolating polynomials and at which derivatives are evaluated are chosen according
to Eq. (80). The metrics 8%z/ (0t 0&) and 0%r/(dt 8¢) in Eq. (70) are specified by differentiating Eq. (84) with
respect to time, i.e.

a z én’/]]a dLn
61’ ag Z éna”ﬂ dé (éi)7

(85)

aré,,n],
PR Za (Enr11;:7) di(f)

After spatial discretization of Eqs. (77)~(79) on an (N + 1) x (M + 1) grid, the equations become a system
of differential algebraic equations of the form in Egs. (5) and (6) consisting of P, = 6(NM + N + M) + 5
total equations and equal number of unknowns. The system is composed of P, = 6NM + 2M ODEs and
ON + 4M + 5 algebraic equations, where the primary variables, y,(t), p = 1,..., P;, taken to be those whose
time derivative explicitly appears in Eq. (5) are

[ p (&) ]
u(&,n;,7)
w(&,n;,7)

p(&m;,7)

(

(1) = r(éi’"”f)} —0,...,N, j=1,.... M, , p=1,....P, (86)
(¢im7)

vt (& 7)
p(&:,0,1)
p(&:,0,7)
v(&;, 1) J
and the secondary variables y, (1), p =P, +1,..., P, are

M u(&,0,7) T
w(¢;,0,1)
p(&,1,7)

yp'(T): péhhf) ) p/:P1+17~"7P2' (87)
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and the functions g, (y1,...,yp), P =P +1,...,P,, are

. or
BT =%
oo Mae
<6r)2 (62)2
—) 4=
aé aé (&,0,7)
. Oz
BT 2%
w— oc
() + (&)
— — = 17 . ,N,
o¢ ac = (&0,0)
500(6[7‘[)
i la - 00
p(c ) 0s(&i,7) g
[Voo - €ST — V- eST“(g,-,l,z)
o y—1 29Psc 89
& Os(éit s, HnT)+ )
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There are no equations for the grid points on the body since these are fixed in time, nor is there an equation
for the tangential velocity on the body at the centerline since this quantity is redundant, the velocity
components, u(0,1,,1), w(0,1,,7), already being specified by Eqgs. (72) and (74).

Finally, the secondary variables y,, p' =P +1,...,P, in Eq. (89) are solved for explicitly in terms
of the primary variables y,, p=1,...,P. Making use of Eq. (84) yields the following expression for
w(0,7 it 1),

> W&y 7) 2 (0)
0) = =TS
d¢

similar expressions are found for p(0,7;,7), and v(0,). Egs. (53) and (54) are reformulated into the fol-
lowing two equations for the quantities u(¢;, 1,7) and w(&;,1,7),i=1,...,N,

(90)
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Once the quantities w(0,7;,7), p(0,1;,7), 2(0,1,,7), and v(0, t) are found from Eq. (90) and u(¢;, 1,7) and
w(é;, 1,7) are found from Eq. (91), the algebraic equations, g, ()1, ..., ¥n,), Eq. (89), are written in the form
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and 05(&;, 1) = ((7 = 1)/(y + 1))00 (&, 7) = 295/ (7 + 1) P05 (&5, 7))

The initial conditions for the shock distance, /(& 1), are taken to be constant, ie., A(&,1) =
h(0,7) =0.25,i=1,...,N, which is sufficient to set initial conditions for the remainder of the physical grid
coordinates, (¢, n;,1), z(&,n;,7), i=0,...,N, j=0,...,M, by making use of Egs. (34) and (35). The
shock velocity, v(¢;, 1), i =0,...,N, is initially set to zero. The initial values for the variables, p(¢;,1;, 1),
u(&, U 1), w(é M5 1), p(&, Njs ©), i=1....N, j=1,....M, p(&,0,7), u(¢,0,7), and p(E,0,7),
i=1,...,N,are set equal to the value behind the shock at (7 = 1) for the corresponding ¢ coordinate line,
e.g. p(&,n;,0) = p(&;, 1,0). The initial values for u(¢;,0,7), i =1,...,N, are chosen so that the boundary
condition at # = 0, Eq. (41) is satisfied exactly, and the initial values for p(0,7;, 1), u(0,#;,1), w(0,1;, 1),
p(0,n;,7), j=0,...,M, are chosen so that the boundary conditions at ¢ = 0, Eqs. (72)—(75) are satisfied
exactly. The initial values for the variables vpr(&;,7), i=1,...,N, are prescribed once the values for
r(&,0,1), 2(&,0,1), u(&,0,7) and w(&;,0,1) have been specified.

Solutions have been obtained for the system of ODEs, Egs. (9), with the standard ODE solver LSODA,
[30,31], which automatically adjusts the time step to achieve a specified level of accuracy. It also auto-
matically switches between an explicit method and implicit method depending on the stiffness of the
problem. A typical steady state calculation on a 17 x 9 grid took 106 s CPU time on a single 800 MHz
processor with 512 MB of RAM. For the steady state problems, the criteria for stopping the integration is
when the L., [Q] error in p(&,n,7 — oo) does not change appreciably. Finally, since LSODA automatically
switches between an explicit method and implicit method depending, it may be of interest to note that early
in the calculation, less than 10% of LSODA’s time steps were implicit whereas about 50% of the time steps
were run in implicit mode as the calculations neared steady state. Apparently as the level of error ap-
proached the level of the discretization error, the problem became increasingly stiff causing LSODA to
switch to implicit mode.

2.7. Pseudospectral flow solver verification and validation

2.7.1. Taylor—Maccoll solution

The solution to supersonic flow over a cone, also known as the Taylor—Maccoll solution [32], will be
used to verify the code described in the previous section. We first use a highly accurate ODE solver to
calculate the Taylor—Maccoll solution, which we will subsequently refer to as the exact solution. The only
modification to the blunt body problem formulation to generate numerical approximations to the Taylor—
Maccoll flow is to replace the centerline boundary condition at ¢ = 0 with a Dirichlet boundary condition
containing the values of p, u, w, p, r, and z taken from the exact solution. A schematic of a 40° cone in-
cluding the physical and computational coordinates is shown in Fig. 3 for a 5 x5 grid for M, = 3.5,
P = Poo = 1. A value of ry = 0.1 was chosen for the results presented in this section. The initial conditions
for p, u, w, p, r, and z are taken from the exact solution, and a sinusoidal distribution is chosen for the initial
shock velocity, i.e. v(£,0) = 0.1sin(2n¢é). In Fig. 4, we show the time history of the L., [Q] error in p(&, n)
over the domain, ©, for the pseudospectral prediction measured against the exact solution for a M, = 3.5
flow over a 40° cone solved on a 5 x 17 grid. The figure demonstrates a rapid relaxation to the exact
solution.

A grid convergence test for the pseudospectral prediction of the Taylor-Maccoll flow is conducted by
refining the grid in the #-direction for a fixed number of 5 nodes in the ¢-direction. The accuracy of the
method is unaffected by grid refinement in the ¢-direction since all derivatives are zero in that direction. As
we can see from Fig. 5, there is a rapid decrease in the error until about 1072 when the error flattens
probably due to roundoff error. Note the spectral nature of the grid convergence, that is the slope of the
error curve continues to steepen with increasing number of nodes, at least until the roundoff limit is
reached, and does not reach a constant value for the slope as would be the case for a method with a fixed
order of accuracy.
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Fig. 3. Schematic of the physical (r,z) and computational (&, #) grids for the Taylor-Maccoll problem.

L [Q] errorinp

1015

Fig. 4. Single 5 x 17 grid L, [Q] residual error in p(¢,#) measured against Taylor—-Maccoll similarity solution as a function of time, ,
for a 40° cone at M, = 3.5.

2.7.2. Steady state blunt body results
The following functions have been chosen to parameterize the blunt body surface

R(&) = ¢, (93)

z(&) =¢", (94)
where the domain for the geometric parameter b is restricted to b € (0, 1). Eliminating the parameter &, we
see that the body surface is described by R = Z°. For b = 0.5, M, = 3.5, p,, = p» = 1, contour plots of
Mach number and pressure are shown in Figs. 6 and 7. The sonic line, M = 1, is predicted in Fig. 6 as well
as the fact that the outflow velocity is indeed supersonic as required in the derivation of the outflow
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Fig. 5. L, [Q] error in p(¢, n) measured against a Taylor-Maccoll similarity solution for a 40° cone in M., = 3.5 flow as grid is refined

in the 7 direction.
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Fig. 6. Contours of Mach number for flow over the blunt body for » = 0.5, M., = 3.5, 17 x 9 grid.

boundary condition. In Fig. 7, the pressure at the stagnation point is seen to be more than 16 times the
freestream pressure at M., = 3.5, and the jump in pressure across the normal shock at the centerline is over

13 times the freestream pressure.
As a means of code validation, a comparison is made between the numerical results for the pressure

distribution on the body with that of the modified Newtonian [33] sine squared law

Co =Cpo sin’ ¢, (95)

where Cy is the pressure coefficient at the body stagnation point and ¢ is the local surface inclination angle
measured with respect to the z axis. The pressure coefficient, C,, is defined as
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Fig. 7. Contours of pressure for flow over the blunt body for b = 0.5, M, = 3.5, 17 x 9 grid.
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The modified Newtonian approximation is a semi-analytical model for the surface pressure distribution
over blunt bodies. Anderson [34] reports that for a power law body with b = 0.5 and aspect ratio near unity,
the modified Newtonian approximation does well in predicting the pressure distribution on the surface of
the body. As can be seen from Fig. 8, the pseudospectral code also predicts close agreement for the pressure

—— Pseudospectral prediction
- - - Modified Newtonian theory

0.8f

0.6

0.2 : : : :
0 0.2 0.4 0.6 0.8 1

r

Fig. 8. Blunt body surface C, distribution predictions at M., = 3.5 from modified Newtonian theory and from the pseudospectral
method, where b = 0.5; 17 x 9 grid.
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distribution on the surface of the body defined by » = /z. As a further check on the validity of the
pseudospectral code in Fig. 9 a comparison is made of the pseudospectral prediction for the shock shape for
M, = 3.5 flow over a sphere with that of an empirical formula by Billig [35] developed for flow over
spherically blunted cones based on experiment.

A grid convergence study is performed for the blunt body with the L. [Q] error over the domain, Q in
p(&,n) shown in Fig. 10, at M, = 3.5 and b = 0.5, where the error is measured against a 65 x 33 or 2145
node numerical solution. For 861 nodes, the L,[Q] error over the domain, Q in p(&, ), has been reduced to
the order of 107! and subsequently flattens due to roundoff error. Like grid convergence plots for the
Taylor—-Maccoll solution, the convergence of the error for the blunt body problem shows a spectral con-
vergence rate as expected of the pseudospectral numerical technique.

= Body surface
- - - Pseudospectral prediction
— Billig 1

0.2f

06 04 0.2 0 02 04 06 038 1
z

Fig. 9. Shock shape prediction of the pseudospectral code for a sphere M., = 3.5 compared with an empirical formula by Billig [35]
derived from experiments; 17 x 9 grid.
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Fig. 10. Grid convergence L., [Q] error in p(&,n) measured against a baseline, 65 x 33 grid, solution for a b = 0.5, M, = 3.5 blunt
body.
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2.7.3. Unsteady acoustic wave interaction with attached shock

Now we turn to a fundamentally unsteady problem: the interaction of an unsteady, planar acoustic wave
with an attached shock, for which the automatic time step selection in LSODA enables us to have tight
control over the error in the solution. A schematic of the grid is shown in Fig. 3, where ry = 0.01 is chosen
for this problem. The values of the freestream flow quantities p, #-, Woo», Poo at the shock are taken to be

Py = 2\1/?<F<z,r> G(z ), (97)

Uy, =0, (98)

o = 3 (F(E,0) 4 G(E, D), %9)

poo:1+y<poo_1)a (100)
where

F(&,1) = /i(Me — 1), (101)

G(&,1) = /7(Mx + 1)(1 + esink(z(&,1,1) — /7(Mw + 1)7)). (102)

Choosing € = 0.01, k = 6n, M, = 3.5, and y = 1.4 in Eqgs. (101) and (102), the system of ODEs in Eq. (9)
are integrated in time for © € [0, 2] on a 33 x 17 grid using the ODE solver LSODA. The CPU time for the
calculation on a single 800 MHz processor was 7.5 h. The initial conditions were set to the Taylor-Maccoll
solution of the unperturbed freestream flow conditions, i.e. p, =1, s =0, woo = /YM, poo = 1. The
relative and absolute error tolerances for the time integration were set to 107! and 10'2, respectively, in
LSODA. As an estimate for the spatial accuracy, we recall that the L, [Q] error in p(,7) on a 33 x 17 grid
for the steady state calculations was 107'2 and 10~ for the Taylor—Maccoll and blunt body flows,
respectively.

Let us analyze the motion of a single point on the shock located at ¢ = 5 = 1. The power spectrum, P(f'),
as a function of reduced frequency for the perturbation in freestream density, Ap,, = p,, — 1, and shock
distance function, Ah = h(1,¢) — h,(1), at the point £ = 5 = 1 are presented in Fig. 11 as well as Ap_|._ |,
which is well upstream of the shock. Initial transients in the solution are neglected in the estimation of the
power spectrum by considering only t € [1.001,2], so that the time interval is 7 = 0.999. The power
spectrum is defined at K/2 + 1 frequencies as

1
P(i) = 5 1Gol

1 K
P(f}) :ﬁ[\Ck|2+|CK7k|2 Ck=1,..., <21>, (103)

1 2
P(fxp2) = 15 1Cxpal’s

where f; is defined only for the zero and positive frequencies

k K
fo=50 k_O,...,<§>, (104)

where 4 = 0.001 is the chosen sampling interval, K = T /4 + 1 = 1000 is the number of sampled points, and
the C; are the discrete Fourier coefficients. The power spectrum, Fig. 11, clearly shows a large peak in the
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Fig. 11. Frequency spectrum at a single point on the shock (£ = 1) of the fluctuations in freestream density, Ap,, = p,, — 1, and the
response of the shock, Ah = h(1,) — hyo(1). My, = 3.5; 33 x 17 grid.

power spectrum for Ap_|.__, at a reduced frequency of fis = (1x/2n),/7(Ms + 1) = 16.0, according to Eq.
(9). Peaks in the power spectrum of Ak, and Ap_, also appear at fis = 16.0 in response to the frequency of
oscillation of Ap_|.__,. In addition, higher harmonics at integer multiples of the fjs = 16.0 ‘forcing’ fre-
quency are present in the power spectrum of Ah and Ap,..

The time history of the density fluctuations and perturbation in shock distance function both measured
at the point ¢ = n = 1 are shown in Fig. 12 for = € [1.75,2.0]. It is evident from Fig. 12 that the freestream
density fluctuations are nearly 180° out of phase with the shock distance perturbations, and that the am-
plitude of the density fluctuations are 20% of the mean flow, while the shock response is two orders of
magnitude below the perturbations in freestream density. The high accuracy of the current method is
critical in capturing the correct shock dynamics for such small amplitude fluctuations, and in predicting the
higher harmonics of the shock fluctuations in Fig. 11, where the amplitude of the power spectrum drops

6x10°

s
v
N

A

Fig. 12. Time history at a single point on the shock (¢ = 1) of the fluctuations in freestream density, Ap.. = p,, — 1, and the response
of the shock, Ah = h(1,t) — hoo(1). My = 3.5; 33 x 17 grid.
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several orders of magnitude with each successively increasing harmonic. The current method is able to
resolve up to the fourth harmonic of Ak, whose amplitude in the power spectrum is on the order of 1071,

3. Conclusion

In this study, we have described a pseudospectral numerical approximation technique for the inviscid
supersonic flow over a blunt body geometry in which the discretized form of the governing equations and
boundary conditions are formulated in terms of a system of ODE’s which can be solved using a standard
ODE solver. This formulation leverages the strengths of widely available ODE solvers to generate time
accurate solutions within prescribed error tolerances through automatic time step selection and explicit/
implicit switching. Additionally, fitting of the shock and the use of global polynomials in the solution
approximation permit high accuracy steady state approximations with 107> error in as little as 106 s on a
single 800 MHz processor. Even higher accuracy has been achieved for a time-dependent problem. This
standard formulation has important potential applications such as approximating unsteady shock phe-
nomena with sufficient accuracy to discern between physical versus numerical instabilities.
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